Name:		Date:			
1.	In the reaction $H_2S + NH_3 \rightleftharpoons HN_4^+ + HS^-$, the two Brönsted bases are		In the reaction $NH_2^- + H_2O \rightleftharpoons NH_3 + OH^-$, two Brönsted acids are		
	A. NH_3 and NH_4^+ B. NH_3 and HS^- C. H_2S and NH_3 D. H_2S and HS^-		A. NH_2^- and H_2O B. NH_2^- and NH_3 C. H_2O and NH_3 D. H_2O and OH^-		
2.	According to the Arrhenius theory, a substance that yields hydrogen ions as the only ion in an aqueous solution isA. a saltB. a baseC. an acidD. a nonelectrolyte	5.	If HCl and H ₂ O react together in an acid-base reaction to form their Brönsted-Lowry conjugates, the products would be A. HCl and H ₃ O ⁺ B. Cl ⁻ and OH ⁻ C. Cl ₂ and H ₂ D. Cl ⁻ and H ₃ O ⁺		
		6.	Which is the conjugate base of water? A. H^+ B. OH^- C. H_3O^+ D. H_2O		
3.	What are the two Brönsted acids in the reaction shown? $HPO_4^{2-} + H_2O = PO_4^{3-} + H_3O^+$ A. HPO_4^{2-} and PO_4^{3-} B. HPO_4^{2-} and H_3O^+ C. H_2O and H_3O^+ D. H_2O and PO_4^{3-}	7.	According to the Brönsted-Lowry theory, an acid is A. a proton donor B. a proton acceptor C. an electron donor D. an electron acceptor		

8.	In the reaction HBr + $H_2O \rightleftharpoons H_3O^+ + Br^-$, which is a conjugate acid-base pair?		According to the substance is disso solution containing	
	A. HBr and Br^- B. HBr and H_2O		To which ion doe	
	C. H_3O^+ and Br^- D. H_3O^+ and HBr		A. acetate	
			C. chloride	
		12.	According to the that is classified a	
9.	In the reaction		A. H ⁺ (aq)	
	$\mathrm{NH}_3(\mathrm{g}) + \mathrm{H}_2\mathrm{O}(\ell) \leftrightarrows \mathrm{NH}_4^+(\mathrm{aq}) + \mathrm{OH}^-(\mathrm{aq}),$		C. $F^{-}(aq)$	
	which pair are Brönsted bases?			
	A. NH_3 and H_2O B. NH_3 and OH^-			
	C. NH_4^+ and H_2O D. NH_4^+ and OH^-			
		13.	Which equation i Brönsted-Lowry b	
			A. $H^+(aq) + H_2Q$	
			B. CH ₃ COO ⁻ (ad CH ₃ COOH(a	
			C. $2Na + 2H_2O$	
10.	Unlike an acid, an aqueous solution of a base		D. $C + H_2O \rightarrow C$	
	A. causes some indicators to change color			
	B. conducts electricity			
	C. contains more H ⁺ ions than OH ⁻ ions			
	D. contains more OH ⁻ ions than H ⁺ ions	14.	According to the	

1.	According to the Arrhenius theory, when an acid substance is dissolved in water it will produce a solution containing only one kind of positive ion. To which ion does the theory refer?			
	A.	acetate	B.	hydrogen
	C.	chloride	D.	sodium

Arrhenius theory, a substance as an acid will always yield

A.	H ⁺ (aq)	В.	K ⁺ (aq)

- D. I⁻(aq)
- illustrates H₂O acting as a base?
 - $O \rightarrow H_3O^+(aq)$
 - q) + H₂O \rightarrow $(q) + OH^{-}(aq)$
 - \rightarrow 2NaOH(aq) + H₂
 - $CO + H_2$
- Arrhenius theory, the only negative ions in an aqueous solution of a base are

A.	OH ⁻ ions	В.	HS ⁻ ions
C.	H ⁻ ions	D.	HCO ₃ ⁻ ions

		1	
15.	Given the reactions A and B:A) $HCl + H_2O \rightarrow Cl^- + H_3O^+$ B) $HCl + HS^- \rightarrow Cl^- + H_2S$ In which of the reactions can HCl be classified as a Brönsted-Lowry acid?A. A, onlyB. B, onlyC. both A and BD. neither A nor B	18.	According to the Arrhenius theory, when a base is dissolved in water it produces a solution containing only one kind of negative ion. What is the name of this negative ion?A. hydrogen carbonate ionB. hydrogen sulfate ionC. hydride ionD. hydroxide ion
16.	Which substance is classified as an Arrhenius base? A. HCl B. NaOH C. LiNO ₃ D. KHCO ₃	19.	Which substance can be classified as an Arrhenius acid? A. HCl B. NaCl C. LiOH D. KOH
17.	According to the Brönsted-Lowry theory, an acid is any species that can A. donate a proton B. donate an electron C. accept a proton D. accept an electron	20.	 Which statement best describes the solution produced when an Arrhenius acid is dissolved in water? A. The only negative ion in solution is OH⁻. B. The only negative ion in solution is HCO₃⁻. C. The only positive ion in solution is H⁺. D. The only positive ion in solution is NH₄⁺.

Problem-Attic format version 4.4.260

© 2011-2015 EducAide Software Licensed for use by Lindsay MacGillivray Terms of Use at www.problem-attic.com

03/11/2016

Acid Base Pre-Test

1. Answer:	В	
2. Answer:	С	
3. Answer:	В	
4. Answer:	С	
5. Answer:	D	
6. Answer:	В	
7. Answer:	А	
8. Answer:	А	
9. Answer:	В	
10. Answer:	D	
11. Answer:	В	
12. Answer:	А	
13. Answer:	А	
14. Answer:	А	
15. Answer:	С	
16. Answer:	В	
17. Answer:	А	
18. Answer:	D	
19. Answer:	А	
20. Answer:	С	