Video: Chemical Equilibrium between forward and reverse reactions

Equilibrium: When the RATE of the forward and reverse reactions are the same.

Observe the reversible reaction shown below.

$CaCO_3(s)$	\rightleftharpoons CaO (s)	+	$CO_2(g)$
calcium carbonate (Chalk)	calcium oxide	carbon dioxide	

Answer in your Interactive Notebook: Page 17.

- 1. Which molecules form when the forward reaction, decomposition of CaCO₃ occurs?
- 2. Which molecule is formed when the reverse reaction between CaO and CO₂ occurs?
- 3. When the forward reaction occurs at the same time as the reverse reaction, they are at
- 4. Which quantities must be equal for a chemical reaction at equilibrium?
 - (1) the activation energies of the forward and reverse reactions
 - (2) the rates of the forward and reverse reactions
 - (3) the concentrations of the reactants and products
 - (4) the potential energies of the reactants and products

5. Given the equation representing a reaction at equilibrium: $N_2(g) + 3H_2 \rightleftharpoons 2NH_3(g)$

(a) Explain, in terms of collision theory, why the rate of the forward reaction *increases* when the concentration of $N_2(g)$ is increased.

When the concentration of N₂(g) is increased,

(b) Explain why the amount of $H_2(g)$ will decrease if $N_2(g)$ is added to the test tube.

(Hint: Think about collision theory and the conservation of atoms during reactions)

When N₂(g) is added to the test tube,