Conversions Practice

Name: \qquad Date: \qquad

1. What is the mass in grams of 1.00 mole of O_{2} gas?
A. 11.2
B. 16.0
C. 22.4
D. 32.0
2. What is the total number of moles in 80.0 grams of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ (gram-formula mass $=64.5$ grams $/ \mathrm{mole}$) ?
3. Which quantity is equivalent to 39 grams of LiF?
A. $\quad 1.0$ mole
B. 2.0 moles
C. 0.50 mole
D. 1.5 moles
4. What is the total number of moles contained in 115 grams of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$?
A. 1.00
B. 1.50
C. 3.00
D. 2.50
5. Show a correct numerical setup for calculating the number of moles of CO_{2} (gram-formula mass $=$ $44 \mathrm{~g} / \mathrm{mol}$) present in 11 grams of CO_{2}.
6. Approximately how many atoms are there in 3.0 moles of AI?
A. 6.0×10^{23}
B. $2\left(6.0 \times 10^{23}\right)$
C. $3\left(6.0 \times 10^{23}\right)$
D. $4\left(6.0 \times 10^{23}\right)$
7. The total number of sodium atoms in 46.0 grams of sodium is
A. 3.01×10^{23}
B. 6.02×10^{23}
C. 12.0×10^{23}
D. 24.0×10^{23}
8. What is the total mass of 3.01×10^{23} atoms of helium gas?
A. 8.00 g
B. 2.00 g
C. 3.50 g
D. 4.00 g
9. Given the reaction:

$$
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

What is the total number of moles of NaOH needed to react completely with 2 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
A. 1
B. 2
C. 0.5
D. 4
10. Given the reaction:

$$
2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}
$$

What is the total number of moles of hydrogen produced when 4 moles of sodium react completely?
A. 1
B. 2
C. 3
D. 4
11. Given the equation:

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

How many moles of HCl would be required to produce a total of 2 moles of H_{2} ?
A. 0.5
B. 2
C. 3
D. 4
12. Given the reaction: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$. What is the ratio of moles of $\mathrm{H}_{2}(\mathrm{~g})$ consumed to moles of $\mathrm{NH}_{3}(\mathrm{~g})$ produced?
A. $1: 2$
B. $2: 3$
C. $3: 2$
D. $6: 6$
13. Given the equation:

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}
$$

How many moles of carbon dioxide are produced for each mole of butane consumed?
A. 1
B. 2
C. 8
D. 4
14. Given the reaction:

$$
2 \mathrm{Al}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 3 \mathrm{H}_{2}+\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}
$$

The total number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ needed to react completely with 5.0 moles of Al is
A. 2.5 moles
B. 5.0 moles
C. 7.5 moles
D. 9.0 moles
15. Given the reaction:

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

What is the maximum number of moles of $\mathrm{H}_{2} \mathrm{O}$ that can be produced when 2.0 moles of NH_{3} are completely reacted?
A. 1.0
B. 2.0
C. 3.0
D. 6.0
16. In the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$, how many grams of H_{2} are needed to produce exactly 1 mole of ammonia?
A. 1 g
B. 2 g
C. 3 g
D. 4 g

Problem-Attic format version 4.4.236 © 2011-2015 EducAide Software Licensed for use by Lindsay MacGillivray Terms of Use at www.problem-attic.com
Conversions Practice $01 / 13 / 2016$

1.

Answer: D
2.

Answer: $\quad 1.24 \mathrm{~mol}$
3.

Answer: D
4.

Answer: D
5.

Answer: $\quad 11 \mathrm{~g} \times \frac{1 \mathrm{~mole}}{44 \mathrm{~g}}$
6.

Answer: C
7.

Answer: C
8.

Answer: B
9.

Answer: D
10.

Answer: B
11.

Answer: D
12.

Answer: C
13.

Answer: D
14.

Answer: C
15.

Answer: C
16.

Answer: C

