Kinetic Energy and Temperature Kinetic Energy is the energy of motion : The faster a molecule moves, the more kinetic energy it has. The more speed and KE an object has, the more work it can do.	1. Which water sample has the highest kinetic energy? (a) H ₂ O (s) , 0C (b) H ₂ O (l) , 50 C
Temperature is the average kinetic energy of all molecules of a substance . The higher the temperature, the faster the molecules are moving. For example, when water vapor, H_2O (g) is 102°C, the molecules move faster than "ice", H_2O (s) at 0°C.	 (c) H₂O (g), 100C 2. The temperature of a sample of matter is a measure of the
Summary: Temperature changes when kinetic energy changes.	a) kinetic energy of its particlesb) potential energy of its particlesc) chemical energy of its particles
Potential Energy and Phase Changes Potential Energy is the stored energy of an object – stored energy that can be converted to kinetic energy to do work. For example, objects hanging above the ground have potential energy because when they are dropped, they begin to fall quickly towards earth.	d) total energy of its particles3. What is potential energy?
There is potential energy stored in covalent and ionic bonds of covalent molecules . Additionally, there is potential energy stored of molecules based on their intermolecular forces.	4. Where is potential energy stored in molecules?
When the particles of a substance have <i>greater freedom to move</i> (are spread apart), they have more Potential Energy (PE). For example, when an ice cube melts, the particles have more room to move, so they have more potential energy.	
When the particles of a substance have <i>less freedom to move</i> (are sticking close together), they have less Potential Energy (PE). For example, when a glass of water freezes, the particles have less freedom to move, so they have less potential energy.	7. When an ice cube is in the phase change of melting(S>L), which statement is true?
Summary: During a phase change, the potential energy changes but the kinetic energy and temperature remain constant.	a) Potential Energy decreasesb) Potential Energy increasesc) Kinetic Energy increases
Intermolecular Forces (Attraction between different molecules) When two molecules are close together, their positively-charged protons attract (pull on) the other molecules's electrons. This is called an intermolecular force, and makes the molecules stick together (because opposite charges attract).	6. Which substance has particles with the strongest intermolecular
When energy is added to $H_2O(1)$, the temperature increases because the molecules move faster. When the $H_2O(1)$ reaches the boiling point, the added energy doesn't increase the speed or the temperature. During a phase change, the added energy does not make the molecules move faster, and the temperature does not increase. During a phase change, the added energy is used to	forces? (a) H ₂ O (s) (b) H ₂ O (l) (c) H ₂ O (g)
separate the particles from each other by breaking the intermolecular forces. This gives the particles more freedom to move and more potential energy.	7. Which substance has particles with the weakest intermolecular forces?
When atoms are separated from each other during a phase change, the substance has an increase in potential energy. This is because when the atoms are further apart, they have more ability to move.	(a) H ₂ O (s) (b) H ₂ O (l) (c) H ₂ O (g)