Limiting Reactant Practice Problems

Name: \qquad Date: \qquad

1. Which represents the greatest mass of chlorine?
A. 1 mole of chlorine
B. 1 atom of chlorine
C. 1 gram of chlorine
D. 1 molecule of chlorine
2. What is the total mass in grams of 0.75 mole of SO_{2} ?
A. 16 g
B. 24 g
C. 32 g
D. 48 g
3. What is the mass of 4.76 moles of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ $($ gram-formula mass $=164 \mathrm{grams} / \mathrm{mole})$?
4. Given the balanced equation representing the reaction between propane and oxygen:

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

According to this equation, which ratio of oxygen to propane is correct?
A. $\frac{5 \text { grams } \mathrm{O}_{2}}{1 \text { gram } \mathrm{C}_{3} \mathrm{H}_{8}}$
B. $\frac{5 \text { moles } \mathrm{O}_{2}}{1 \text { mole } \mathrm{C}_{3} \mathrm{H}_{8}}$
C. $\frac{10 \text { grams } \mathrm{O}_{2}}{11 \text { grams } \mathrm{C}_{3} \mathrm{H}_{8}}$
D. $\frac{10 \text { moles } \mathrm{O}_{2}}{11 \text { moles } \mathrm{C}_{3} \mathrm{H}_{8}}$
5. The molar mass of $\mathrm{Ba}(\mathrm{OH})_{2}$ is
A. $\quad 154.3 \mathrm{~g}$
B. $\quad 155.3 \mathrm{~g}$
C. 171.3 g
D. 308.6 g
6. The sum of the atomic masses of the atoms in one molecule of $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2}$ is called the
A. formula mass
B. isotopic mass
C. percent abundance
D. percent composition
7. Given the reaction:

$$
\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} .
$$

How many moles of $\mathrm{H}_{2} \mathrm{O}$ are needed to exactly react with 2.0 moles of Ca ?
A. 1.0
B. 2.0
C. 0.50
D. 4.0
8. In the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$, how many grams of H_{2} are needed to produce exactly 1 mole of ammonia?
A. 1 g
B. 2 g
C. 3 g
D. 4 g
9. Given the reaction:

$$
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

What is the total number of moles of NaOH needed to react completely with 2 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
A. 1
B. 2
C. 0.5
D. 4
10. Given the equation:

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

How many moles of HCl would be required to produce a total of 2 moles of H_{2} ?
A. 0.5
B. 2
C. 3
D. 4
11. In the reaction $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$, what is the total number of moles of CO used to produce 112 grams of iron?
A. 1.0
B. 2.0
C. 3.0
D. 4.0
12. Given the reaction:

$$
\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}
$$

What is the total number of grams of Mg consumed when 0.50 mole of H_{2} is produced?
A. 6.0 g
B. 12 g
C. $\quad 3.0 \mathrm{~g}$
D. 24 g
13. Given the reaction:

$$
2 \mathrm{Al}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 3 \mathrm{H}_{2}+\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}
$$

The total number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ needed to react completely with 5.0 moles of Al is
A. 2.5 moles
B. 5.0 moles
C. 7.5 moles
D. 9.0 moles
14. Given the reaction: $\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$. How many moles of $\mathrm{H}_{2} \mathrm{O}$ are needed to react completely with 2.0 moles of Ca ?
A. $\quad 1.0$ mole
B. 2.0 moles
C. 0.50 mole
D. 4.0 moles
15. Given the reaction:

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

How many moles of oxygen are needed for the complete combustion of 3.0 moles of $\mathrm{CH}_{4}(\mathrm{~g})$?
A. 6.0 moles
B. 2.0 moles
C. 3.0 moles
D. 4.0 moles
16. Given the reaction:

$$
2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What is the total number of grams of $\mathrm{O}_{2}(\mathrm{~g})$ needed to react completely with 0.50 mole of $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$?
A. 10 g
B. 40 g
C. 80 g
D. 160 g
17. Given the reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

What is the mole-to-mole ratio between nitrogen gas and hydrogen gas?
A. $1: 2$
B. $1: 3$
C. $2: 2$
D. $2: 3$
18. Given the balanced equation:

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

What is the total number of moles of $\mathrm{O}_{2}(\mathrm{~g})$ that must react completely with 8.0 moles of $\mathrm{Al}(\mathrm{s})$ in order to form $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$?
19. Given the balanced equation representing a reaction:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

What is the total mass of water formed when 8 grams of hydrogen reacts completely with 64 grams of oxygen?
A. 18 g
B. 36 g
C. 56 g
D. 72 g
20. Given the balanced equation representing a reaction:

$$
\mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\text { heat }
$$

What is the total mass of $\mathrm{CaO}(\mathrm{s})$ that reacts completely with 88 grams of $\mathrm{CO}_{2}(\mathrm{~g})$ to produce 200. grams of $\mathrm{CaCO}_{3}(\mathrm{~s})$?
A. 56 g
B. 88 g
C. 112 g
D. 288 g
1.

Answer: A
2.

Answer: D
3.

Answer: $\quad 781 \mathrm{~g}$
4.

Answer: B
5.

Answer: C
6.

Answer: A
7.

Answer: D
8.

Answer: C
9.

Answer: D
10.

Answer: D
11.

Answer: C
12.

Answer: B
13.

Answer: C
14.

Answer: D
15.

Answer: A
16.

Answer: B
17.

Answer: B
18.

Answer: 6.0
19.

Answer: D
20.

Answer:
C

